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We studied the response of a linearly growing domain of the oscillatory chemical chlorine dioxide-iodide-
malonic acid �CDIMA� medium to periodic forcing at its growth boundary. The medium is Hopf-, as well as
Turing-unstable and the system is convectively unstable. The results confirm numerical predictions that two
distinct modes of pattern can be excited by controlling the driving frequency at the boundary, a flow-
distributed-oscillation �FDO� mode of traveling waves at low values of the forcing frequency f , and a mode of
stationary Turing patterns at high values of f . The wavelengths and phase velocities of the experimental
patterns were compared quantitatively with results from dynamical simulations and with predictions from
linear dispersion relations. The results for the FDO waves agreed well with these predictions, and obeyed the
kinematic relations expected for phase waves with frequencies selected by the boundary driving frequency.
Turing patterns were also generated within the predicted range of forcing frequencies, but these developed into
two-dimensional structures which are not fully accounted for by the one-dimensional numerical and analytical
models. The Turing patterns excited by boundary forcing persist when the forcing is removed, demonstrating
the bistability of the unforced, constant size medium. Dynamical simulations at perturbation frequencies other
than those of the experiments showed that in certain ranges of forcing frequency, FDO waves become unstable,
breaking up into harmonic waves of different frequency and wavelength and phase velocity.
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I. INTRODUCTION

Oscillating media which are at rest and grow axially by
addition at a growth boundary or which move in an open
flow �1�, and whose boundary conditions at the growth or
inflow boundary are fixed or periodically forced, are known
to develop stationary �2–4� and traveling waves �5–7�, de-
pending on the boundary-forcing frequency. Axially growing
media and open flows are physically equivalent �5,6� since
they are related by a Galilei transformation �8�. Both map the
oscillatory dynamics of the medium onto space and the
waves are called �3,5,7� flow-distributed oscillations �FDO�.

FDO waves can exist under a much wider range of con-
ditions than Turing patterns since they do not require differ-
ential transport. As a pattern-forming mechanism, they play a
key role in the early development of higher organisms,
whose common feature is a spatial domain that expands axi-
ally from a growth zone. This growth, combined with genetic
oscillation of the medium �or, in biological terms, the exis-
tence of a “segmentation clock” �9�� and their eventual arrest
play a key role in the transverse segmentation of developing
embryos. They govern the formation of gene-expression
waves that result in the formation of somites �5–7,10�, the
precursors of vertebrae and body segments �5,6,11�. In this
view the size of somites is controlled by the linear growth
rate divided by the initial oscillation frequency �5,6�.

The properties of FDO waves �their wavelength and phase
velocity� are determined, in the simplest approximation, by
the phase kinematics of the oscillating medium �5–7�, as dis-
cussed in Sec. VI. In the absence of strong gradients and of
diffusion, each fluid element acts as an independent oscilla-
tor, with an initial phase set at the upstream boundary. In the

presence of diffusion, however, nearby fluid elements are
coupled. This can result in damping and shifting of the os-
cillation frequency and in other effects. The essential kine-
matics remains however the same provided the intrinsic os-
cillation frequency is viewed as a variable that depends on
the pattern wavelength. Differential transport introduces
other complications, such as the possibility of Turing and
differential flow �DIFI� instabilities. The concept of FDO
was generalized to include differential flow and diffusion, in
which case the resulting stationary waves are known as flow
and diffusion-distributed structures �FDS� �12� which have
been experimentally verified �13,14�. In the general case
these compete with various types of traveling waves �15,16�
that come into play when the system is perturbed by noise
�16�.

A linear stability analysis near an unstable homogeneous
fixed point state is one way to predict the frequencies and
wavelengths at which undamped stationary or traveling
waves can occur, and which modes may be excited by an
oscillating boundary condition. This is done by solving a
dispersion relation for the appropriate wave ansatz �17,18�.
Instabilities in a flow system or growing medium may be
convective or absolute, depending on the relative rates of
growth or flow v and of the intrinsic rate of spreading vsp of
a localized disturbance �19,20�. In the convective case, in
which we are interested here, the growth �flow� rate is
greater than the spreading velocity v�vsp. Consequently a
disturbance can only propagate away from the growth or
inflow boundary �21�, and therefore the inflow boundary
condition controls the dynamics of convectively unstable
systems and selects the global modes. This can lead to so-
called “noise-sustained structures” if there is random noise at
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the upstream boundary �20�. Here we consider a different
situation where instead of noise there is a “signal” at the
boundary that can select particular wave modes.

While analyzing convective instabilities of an unstable
fixed point state with differential transport, it was found �18�
that a quite generic behavior is for two sets of convectively
growing modes to exist in different regions of boundary-
forcing frequencies. FDO modes occur when the driving fre-
quency is zero or comparable to the intrinsic oscillation fre-
quency of the medium, while in the presence of differential
diffusion, Turing modes can occur, generally at higher fre-
quencies. The latter are essentially the standard Turing pat-
terns, except that they are advected with the moving medium
and their wavelengths can be selected by varying the
boundary-forcing frequency. These predictions are borne out
by nonlinear simulations �18�.

Other complications, such as the nonlinear competition of
different modes, depend on both diffusion and nonlinearity
and therefore cannot be fully addressed either by linear sta-
bility analysis or by the kinematic picture. For example,
FDO waves may become unstable �4�, break up and reorga-
nize into resonant waves �22� at a harmonically related fre-
quency and a nonlinear boundary forcing may excite jump-
ing waves �23�, which at large downstream distances may
ultimately be smoothed out or else break up into secondary
waves.

The first objective of this paper is to verify experimentally
the predictions �18� of two types of boundary-controlled
waves �demonstrating the excitation and control of both
FDO and Turing waves�, that arise in a boundary-forced,
growing, oscillating medium in the presence of strong differ-
ential diffusion. Previously, stationary and traveling FDO
waves were demonstrated experimentally in a flow system
without differential transport �24�. A medium that is
Turing-as well as Hopf-unstable �in particular, the use of
boundary forcing to select one or the other� represents a new
ingredient in this context. Our second aim is to compare the
experimental results qualitatively and quantitatively with
analytical and numerical predictions and to clearly demon-
strate that the kinematic nature of FDO waves persists, re-
gardless whether differential transport is present or not.

In the remainder of this paper, we first describe our ex-
periments and results, and then interpret the results with the
aid of comparisons with numerical models and with the pre-
dictions of a linear analysis and an understanding based on
phase kinematics.

II. EXPERIMENT

For the experiments the photosensitive chlorine-dioxide-
iodide-malonic acid �CDIMA� reaction �25� was used in its
oscillatory domain in a quasi-two-dimensional �quasi-2D�
medium. To study its dynamics under conditions of pro-
nounced differential diffusion, the system was tuned so that
its fixed point was subject to both Hopf and Turing instabili-
ties. The experiments were done in a one-side-fed unstirred
reactor �CFUR� connected to a continuously fed stirred tank
reactor �CSTR� �26,27�. The spatial structures were formed
in a thin agarose gel �0.3 mm thick, 20 mm diameter, 2%

Agarose� separated from the CSTR by Anapore and nitrocel-
lulose membranes. The CSTR was fed with a stream of the
following composition: �I2�=0.6 mM, �MA�=1.2 mM,
�ClO2�=0.15 mM, �H2SO4�=10 mM, �PVA�=0.25 g / l,
where MA stands for malonic acid and PVA stands for poly-
vinyl alcohol. The CSTR residence time was 125 s and the
reactor temperature was 4�0.5 °C.

The photosensitivity of the CDIMA medium �28� was
used to achieve both the growth of the active medium and its
periodic boundary forcing. In the stationary medium there
is no physical flow, hence differential flow is absent and
only differential diffusion, arising from the partial immobili-
zation of the activator, comes into play. The principle of the
experiment is illustrated by Fig. 1. A computer-controlled
data projector was used to cast the image shown onto the
circular CDIMA medium �27,29�. The area outside the spa-
tially fixed rectangular �black+gray� domains was inacti-
vated by light of sufficiently high intensity Imax. The black
rectangular “active” domain received minimal, ambient light
Imin and it was made to grow with velocity vb along its right
edge into the gray domain. The latter area received a peri-
odically modulated light flux I�t�= I0+ I1 cos��t�, where �
=2�f , I0=10450�50�10−6 W /cm2, and I1=9350�50
�10−6 W /cm2. Note that the midpoint I0 of the modulated
light flux was substantially higher than the intensity Imin in
the active domain—the light intensity oscillates between Imin
and Imax. This implies that the boundary perturbation had a
significant zero-frequency, dc component along with the os-
cillatory component. One unexpected consequence of this is
the breakup and rearrangement of the waves at some driving
frequencies into resonant waves of higher frequency and
shorter wavelength. This will be briefly mentioned below
and will be examined in detail in a subsequent paper. Images
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FIG. 1. �Color online� Schematic of the experimental setup. In
the gray area to the right of the moving boundary, the medium is
periodically forced by an oscillating light intensity. The black area,
with minimal illumination, contains the actively oscillating medium
where waves form. Outside the rectangle, all oscillations are sup-
pressed by a large light intensity Imax.
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of the patterns evolving in the active domain were acquired
by a charge-coupled device �CCD� camera that was con-
nected to a computer for image enhancement and further
analysis.

Typical experimental one-dimensional �1D�-space/time
plots, generated from the two-dimensional �2D� image file by
stacking the intensity profile along a suitably chosen line,
parallel to the growth axis, are shown in the left-hand panels
of Figs. 2 and 3. The diagonal dashed lines represent the
moving boundary, whose velocity was within the range vb
=0.42�0.08 mm /min in all experiments. The bottom-right
half of the plots represents the periodically forced medium
ahead of the expanding active domain, and it displays oscil-
lations whose spacing is equal to the forcing period T=1 / f .
The FDO/FDS waves appear in the upper-left halves of the
plots. Their vertical �temporal� spacing reflects the natural
oscillation period of the reaction-diffusion system, and their
phase velocities and wavelengths are constrained by simple
geometrical �kinematic� considerations which are described
in Sec. VI.

The spreading velocity of a reaction-diffusion wave was
measured as follows. Without illumination the circular
CDIMA medium was allowed to oscillate. The rapid periodic
phase waves �30� that sweep through the medium initially
eventually slowed down through the intervention of diffusion
�31�, until, after 90 min they had reached their asymptotic
reaction-diffusion velocity. Their spreading velocity was
measured as vsp=0.35�0.08 mm /min from a space-time
plot �21�. All experiments were performed in the convec-
tively unstable regime vb�vsp close to the absolute instabil-
ity limit vb=vsp. Note that the system was tuned to lie close
to its Hopf and Turing bifurcations as well as to its
convective/absolute instability limit.

To test the response of the system to perturbations other
than those of illumination at the moving boundary, a supple-
mentary experiment was performed in which the growth ve-
locity was modulated �22� at constant light intensity at the
boundary, according to v�t�=v0+v1 cos��t�. The velocity
modulation v0=v1=0.42�0.08 mm /min was quite pro-
nounced, i.e., the velocity varied from zero to 0.84 mm/min.

III. EXPERIMENTAL RESULTS

Figures 2 and 3 show the experimental space time plots in
the left-hand panels and the corresponding simulation results

FIG. 2. Space-time plots of experimental �left column, panels a,
c, e, and g� and numerically computed �right column, panels b, d, f,
and h� at low perturbation frequencies f / f0�1.30. The diagonal
dashed lines represent the constant velocity vb of the moving
boundary. Forcing frequencies increase from top to bottom: a and b:
f / f0=0.0; c and d: f / f0=0.61; e and f: 0.95; g and h: 1.30. The
space and time units in the simulation plots are the dimensionless
units of the model Eq. �1�.
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FIG. 3. Space-time plots similar to the ones in Fig. 2, measured
�panels a and c� and computed �b and d� at high perturbation fre-
quencies. a and b: f / f0=5.06; c and d: f / f0=8.0
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in the right-hand panels, at six values of the forcing frequen-
cies that increase from top to bottom. The simulation model
is described in the next section. Experimental data of the
frequencies and velocities, derived from direct measurements
on the space-time plots, are collected in Table I. The phase
velocity and frequency of the FDO waves were measured
directly from the space-time plots. Since the phase velocity
diverges for the waves driven near the natural oscillation
frequency, we recorded the inverse phase velocities 1 /C
rather than C. For similar reasons, the wavelengths are not
reported in Table I. To facilitate comparisons between the
experimental results and numerical and analytical predic-
tions, all forcing frequencies were normalized by the mea-
sured oscillation frequency of the �unstirred� reaction-
diffusion system, and numerical simulations were done at
similar values of this ratio. The values compared, in other
words, are those of f / f0=T0 /T=1 /R, where T0 was mea-
sured separately for each experiment.1 The reduced frequen-
cies lie in the range 0	 f / f0�8.

At constant forcing f / f0=0 the wave train shown in panel
2�a� moves at the same rate as the boundary �it is stationary
in the comoving frame of the equivalent flow system
�2,3,7��. Note that the amplitude of the waves decays slightly
with increasing distance from the boundary. This decay will
be shown to be consistent with linear dispersion analysis. A
longer simulation reveals them to be transient waves, and we
expect that an experiment run for a longer time would also
show that the waves produced by constant forcing eventually
decay to nothing. At slow forcing f / f0=0.61 periodic waves
move in the same direction as, and faster than �i.e., toward�
the moving boundary, C�v, as shown in panel 2�c�. Panel
2�e�, obtained with forcing near the natural frequency of the
RD system, f / f0=0.95, shows almost homogeneous bulk os-
cillations or waves with nearly infinite velocity and infinite
wavelength near the moving boundary. In panel 2�g�, ob-
tained at f / f0=1.30, the dominant waves move away from
the moving boundary. The direction of the dominant waves
agrees in all cases with that predicted for flow systems
�5,7,18� if the change of reference frame is taken into ac-
count �see Sec. VI�. Near the fixed �left-hand� boundary,
however, the waves in panels 2�e� and 2�g� propagate in the

direction opposite to those near the moving boundary, sug-
gesting an influence of the fixed boundary within a boundary
layer.

The results obtained at high forcing frequencies are given
in Fig. 3. Figure 3�a� shows a series of irregularly spaced
stationary waves that grow slowly with time and reach their
full amplitude long after the boundary has moved out of the
system, which no longer grows at this time. The snapshot of
the 2D structure shown in Fig. 4, from which Fig. 3�a� was
constructed, identifies the stationary waves as Turing spots.
These nascent hexagonal spots exhibit typical irregularities
which would anneal only after many hours �32�.

While the excitation of the Turing mode at high perturba-
tion frequency is expected from both the dispersion relation
and the 1D simulations in this region of parameter space
�18�, the two-dimensional nature of the experimental me-
dium apparently has a radical effect on the nature of the
Turing patterns. The 1D simulations show a clear selection
of the wavelength by the boundary-forcing frequency,
namely, 
=vbT where T is the forcing period, but the pat-
terns appearing in the experimental results are manifestly not

1For the two experiments with higher driving frequencies f / f0

=5.0,8.0, there were no sustained coherent self-oscillations to mea-
sure, as Turing or other structures were formed instead. In these
cases, the natural period T0 was taken to be the average of periods
measured in the other experiments, with uncertainty corresponding
to the deviation of those values. Variations in the natural frequency
and their significance will be discussed further in Sec. VI.

TABLE I. Measurements of FDO wave properties from experimental space-time plots.

T�min�=1 / f T0�min�=1 / f0

vb

�mm/min�
1 /C

�min/mm� T0 /T= f / f0 vb /C

� 2.37�0.06 0.47�0.01 2.97�0.14 0 0.93�0.04

4.49�0.02 2.72�0.03 0.399�0.008 1.16�0.08 0.61�0.02 0.38�0.03

3.51�0.03 3.31�0.02 0.410�0.008 0.03�0.05 0.95�0.02 0.010�0.015

2.42�0.02 3.14�0.02 0.415�0.005 −1.00�0.06 1.30�0.02 −0.33�0.02

FIG. 4. �Color online� Series of 2D snapshots of the system
forced at high frequencies. The length of the region shown here is
37.5 mm. �a� f / f0=5.0�0.6 �within the window where Turing pat-
terns are expected� and �b� f / f0=8.0�0.9 �above the Turing win-
dow�. The dotted lines show the position of the moving boundary.
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quasi-one-dimensional and it is much less clear how �or if�
their spacing is controlled by the boundary forcing.

Figures 3�c� and 3�d� show that at an even higher pertur-
bation frequency f / f0=8.0, neither FDO nor Turing struc-
tures are excited. This is consistent with results from linear
dispersion analysis, see below. In the simulation �Fig. 3� in
the top panel of Fig. 4�a� there is a rapidly decaying wave,
just behind the moving boundary. It appears to be a transient,
damped FDO wave moving at the same speed as the bound-
ary like the one found at f / f0=0 and is presumably due to
the zero-frequency component of the driving signal that was
mentioned previously.

We remark that the Turing structures which are formed at
f / f0=5.0 reach their full amplitude and persist long after the
boundary has reached the end of the active rectangle and
stopped moving, just as the FDO waves are sustained long
after the boundary has passed. This highlights the multista-
bility of the medium, and the corresponding multiple insta-
bility of the homogeneous fixed point state. FDO waves and
Turing patterns are competing patterns supported by the me-
dium. The essential aspect of the FDO mechanism �or, in this
case, the FDO mechanism extended to include strong differ-
ential diffusion and Turing structures� is that the boundary
plays a role in determining which of the competing patterns
begin to be established—once established they may persist
long after the driving signal that gave rise to them has ceased
to exist. Analogously in the case of a flow system with a
fixed upstream boundary, the driving of the upstream bound-
ary imposes a structure that can be advected along with the
fluid and sustains itself after the advected fluid has long since
lost diffusive contact with the boundary.

The supplementary experiment, in which the growing me-
dium was perturbed by modulating the growth rate �22� in-
stead of the illumination, gave results that were qualitatively
similar to those in Figs. 2 and 3 at similar perturbation fre-
quencies f / f0=0.93;8.0. Apparently, modulation of bound-
ary condition and of growth rate may be used interchange-
ably for mode selection. This is closely analogous to results
found previously in numerical simulations of a flowing sys-
tem with fixed boundary �22�, where it was shown that
modulation of the flow velocity could lead to the breakup of
a transient stationary wave to form traveling FDO waves
with frequencies selected by the velocity modulation fre-
quency �33–40�.

IV. NUMERICAL SIMULATIONS

To simulate our experimental system numerically, we
used the Lengyel-Epstein kinetic model �25� of the CDIMA
reaction. In dimensionless form for one spatial dimension,
the model is given by the following equations:

�tu = a − bu −
4uv

1 + u2 − ��t� + �x
2u ,

�tv = �bu −
uv

1 + u2 + ��t� + d�x
2v� , �1�

u and v are the dimensionless concentrations of activator and
inhibitor and a, b, and  are control variables and rate con-

stants. The effective ratio of diffusion coefficients that arises
from partial immobilization of the activator, is d. � is re-
lated to the light intensity; the � terms represent the photo-
sensitivity and account for the growth of the active domain
and the modulation of the boundary by light. On the illumi-
nated side of the moving boundary x�vbt the light intensity
in the simulations is ��t�=�0+�1 cos �t and it is �min=2.0
on its dark side x�vbt.

The following set of parameters was chosen to mimic
approximately the dynamics of the experimental system: a
=22, b=1.3, d=1.07, =8.5, with moving-boundary ve-
locity vb=20 s.u. / t.u. The forcing parameters are �0
=3 , �1=1. The equations were solved using an explicit
second-order method. Space and time steps were �x=0.1
and �t=2.0�10−4.

The simulation results are shown in the right-hand panels
Figs. 2�b�, 2�d�, 2�f�, and 2�h� and in Figs. 3�b� and 3�d� for
the same values of the frequency ratio as the experiments.
These and further simulations will be fully analyzed in the
dimensionless plots, Fig. 7, as described in Sec. VI. The
qualitative agreement with experiments is good: the waves
travel in the same direction and panel �h� also shows the
reversal of propagation direction near the fixed �left-hand�
boundary, similar to that observed in panel �g�. The pulsa-
tions of the waves behind the moving boundary in Figs. 3�d�,
3�f�, and 3�h� resemble those of recently calculated FDO
waves that were perturbed by a sinusoidally modulated flow
�22�. When the perturbation frequency was an integer frac-
tion of the natural oscillation frequency, it was found that the
flow-modulated waves could become unstable and lead to
the resonant breakup and reconnection of the wave trains.
The pulsations are also analogous to those of “jumping”
waves excited by a boundary driving signal which is differ-
ent from the natural limit cycle of the oscillating medium,
observed in both simulations and experiments with flow sys-
tems �23�. In the present experiments, however, these modu-
lations are not noticeable, suggesting that the quasi-2D me-
dium acts as a kind of buffer that smoothes the pulsations
found in the 1D model system.

The simulation and experiment at high driving frequen-
cies shown in Figs. 3�a� and 3�b� show both similarities and
dissimilarities. In both cases, stationary Turing waves con-
tinue to grow slowly out of the background, once the moving
boundary has passed the system. In the numerical calcula-
tions, they are regular and periodic, with wave number pro-
portional to the driving frequency, as expected. The experi-
mental Turing pattern, on the other hand, is two-dimensional
and irregular as noted in the previous section. Another dif-
ference between the simulations and the experimental results
is evident in the behavior near the fixed boundaries �the left
boundary is always fixed, and the moving right boundary
eventually stops moving and becomes a fixed one after the
active domain has reached its maximum length.� In the simu-
lation, unlike the experiment, there is a well-defined bound-
ary layer near each of these fixed boundaries. These bound-
ary layers exhibit Hopf oscillations rather than Turing
patterns. In the case of Fig. 3�b�, there is a stationary bound-
ary between the oscillating boundary layer and the Turing
patterns. In Fig. 3�d�, however, no patterns are excited by the
moving boundary except for the decaying transient FDO
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waves. These transient waves are presumably excited by the
zero-frequency component of the boundary condition, and
they decay as predicted by the linear dispersion relation �see
next section�. In the case of the simulations, these transient
waves decay to a uniform fixed point state, which is subse-
quently invaded by the Hopf oscillations that originate near
the fixed boundaries. The experiment shows a slightly differ-
ent behavior: the decaying waves near the moving boundary
give way almost immediately to irregular oscillations that are
not coherently synchronized across the length of the me-
dium. One can be seen from the two-dimensional snapshot in
Fig. 4�b� that these oscillations are actually two-dimensional
patterns that are not evidently aligned with the boundary.

V. LINEAR DISPERSION RELATIONS

As shown elsewhere �18,41�, linear stability analysis of
the governing Eqs. �1� around the fixed point of the local
system leads to a dispersion relation for wavelike distur-
bances that is quartic in the complex wave number k. To
derive the dispersion relation for waves driven by a boundary
condition driven with steady amplitude, one should use the
reaction-diffusion-advection equations in the frame of refer-
ence of the equivalent flow system with a fixed boundary
�17,18�. Issues of the choice of reference frames will be dis-
cussed in the following paper. The flow system is described
by

�tu = a − bu −
4uv

1 + u2 − ��t� + �x
2u − vb�xu

= f�u,v,t� + Du�x
2u − vb�xu ,

�tv = �bu −
uv

1 + u2 + ��t� + d�x
2v� − vb�xv

= g�u,v,t� + Dv�x
2v − vb�xv , �2�

where Du=1 and Dv=d
Dispersion relations are obtained by considering a small

perturbation of the fixed point, of the form

�u

v
� = �u0

v0
� + �U

V
�exp i��t − kx� , �3�

where the fixed point �u0 ,v0� under constant illumination �
is given by

u0 =
a − 5�

5b
, v0 = a

1 + u0
2

5u0

and �U ,V� are the perturbation amplitudes. Here, � is taken
to be a purely real frequency, assuming that the system is
driven with a steady amplitude. The wave number k is in
general complex as the wave may grow or decay with in-
creasing distance from the inflow boundary. Re k and Im k
are the wave number and spatial growth rate, respectively.
�In general U and V may also be complex—see �18��. Sub-
stitution of the ansatz �Eq. �3�� into the Eqs. �2� leads to the
dispersion relation

0 = �vbk − ��2 + i�k2�Du + Dv� − Tr J��vbk − ��

+ k2�DuJuu + DvJvv� − k4DuDv − det J , �4�

where

J = ��
� f

�u

� f

�v

�g

�u

�g

�v
	�

�u0,v0�

�5�

is the Jacobian matrix of the chemical kinetic equations
evaluated at the fixed point. Since the dispersion relation is
quartic in k, there are four solutions for k���-two pairs of
complex conjugate mirror images. Two of them are physi-
cally relevant near the growth �or inflow� boundary, and the
other pair is associated with the fixed �or downstream�
boundary �18�. The real parts Re�k� of the eigenvalues are
the wave number and the imaginary parts Im�k� are the
growth rates. The phase velocity in the flow system is given
by c=� /Re k. In the equivalent growing system the phase
velocity is Galilei-transformed to C=vb−c. Figure 5 shows
plots of Re k, Im k, and C for both relevant solutions as
functions of f / f0, obtained by numerically solving the dis-
persion relation �4�. The frequency f0=0.7613 t.u−1 was ob-
tained from a simulation of the reaction-diffusion system.
As before �18�, Fig. 5 reflects two modes with locally posi-
tive growth rates. One solution branch �the solid curve in
the figure� has positive growth rate for frequencies 0.20
� f / f0�1.75. These modes correspond to FDO waves. The
phase velocity of these waves has a pole at f / f0
1, as
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FIG. 5. �Color online� Solutions of dispersion relations for
small-amplitude waves based on linear stability analysis of the un-
stable fixed point state. The two solutions each reach a peak growth
rate in a different band of frequencies. The lower frequency peak in
the solid curve represents FDO modes, and the other peak contains
Turing modes. At the natural oscillation frequency, the correspond-
ing FDO modes have zero wave number and infinite phase velocity.
The Turning modes, on the other hand, have zero phase velocity.
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expected from phase kinematics.2 At zero frequency, C=vb
=20 t.u. /s.u., or in other words the waves produced by zero-
frequency forcing move at the same speed as the boundary.
Note however, that the zero-frequency waves are slightly
damped. This is consistent with the simulation and experi-
mental results, in which these zero-frequency waves appear
to be decaying slightly with increasing distance from the
boundary. FDO waves also become damped for frequencies
f / f0�1.75 The other solution shows a positive growth rate
in the higher frequency interval 4.2� f / f0�6.6. These
growing modes correspond to Turing patterns. As expected
for Turing patterns, they have vanishing phase velocity C,
i.e., they are stationary with respect to the medium. The two
peaks are separated by a gap of decaying modes at
1.75� f / f0�4.2. No experimental points were collected in
this gap, but nonlinear simulations at these frequencies show
unexpected results which will be analyzed in the following
paper.

VI. PHASE KINEMATICS OF WAVES

This section summarizes the kinematics of phase waves
that arise in boundary-forced �at frequency f� self-oscillating
media �with intrinsic frequency f0�, which either flow or
grow with velocity vb. The basic kinematic relationships of
these waves can be derived in several different ways �5,6�.
Here, we read them straightforwardly from the geometry of a
space-time diagram. We derive them first for a flowing me-
dium and then apply the Galilean transformation to the
equivalent moving-boundary system. Figure 6 illustrates
schematically the space-time plot for phase waves in a flow-
ing, self-oscillating medium. Two successive phase fronts
�wave crests� are shown, traveling with velocity c=tan �.
The worldline of an arbitrary point advected with the fluid

flow is also shown, with velocity v=tan �. The vertical dis-
tance between two successive wave crests is by definition T,
the period of the traveling wave. On the other hand, if the
wave behavior is due to the self-oscillation of the medium
and a point advected along with the fluid flow is assumed to
be oscillating at the intrinsic frequency f0, then its trajectory
must intersect the two successive wave crests at times sepa-
rated by one oscillation period T0=1 / f0. �Note that what we
call the intrinsic frequency need not be identical to the batch-
mode oscillation frequency �24�—see below� During this
time the distance traveled by the advected reference point is
vbT0. From the diagram, it is then readily apparent that a
phase front travels the same distance vbT0 in time T0−T, and
hence the phase velocity of the waves is

c = tan � =
vbT0

T0 − T
=

vb

1 − R
, �6�

where R� f0 / f =T /T0. The wavelength of the phase waves is
then given by


 = cT . �7�

Note that in the case f � f0, the derivation works the same
way, but in this case the phase velocity becomes negative,
i.e., the wave fronts move upstream. The case T=T0 repre-
sents a uniform, synchronized oscillation of the whole sys-
tem. In this case, the phase velocity and wavelength are in-
finite. When the medium is growing and stationary, as in
developing organisms, the velocity C relative to the medium
is obtained by subtracting the growth rate

C = vb − c = vb
1

1 −
T0

T

. �8�

The sign reversal is necessary if the flow velocity in the flow
system and the boundary velocity in the growing system are
both taken to be positive.

The frequency of the waves as measured in the moving-
boundary frame is f0, since a point advected with the fluid in
the flow system is equivalent to a stationary point in the
moving-boundary frame. In the normal case of waves con-
trolled by the driving at the boundary, the frequency of
waves in the flow system is equal to the forcing frequency.
The above derivations are purely kinematic or geometric. In
the simplest case, called the “kinematic limit,” the “intrinsic”
period T0 is a constant and is the same as the natural limit
cycle period of the underlying chemical oscillator. Stronger
diffusion, however, can couple the oscillations of nearby
fluid elements and alter their dynamics, possibly changing
the oscillation period. Diffusion is unimportant when there
are very weak gradients, which is the case for the nearly
synchronous oscillations that occur near T
T0. Deviations
from the kinematic limit occur when both strong diffusion
and large gradients exist. Since the above relationships were
derived purely geometrically, they remain valid away from
the kinematic limit provided one defines T0 as variable rather
than constant. This variable effective T0 depends on the dif-
fusion constants, the wavelength of the wave and thus im-
plicitly on the frequency. In the frame of reference where the

2The pole is actually shifted slightly from f / f0=1. This is because
small-amplitude oscillations have a slightly different frequency
from the stable limit cycle. The dispersion relation for small-
amplitude waves reflects the former, whereas the normalization
constant f0 is the frequency of large-amplitude oscillations.
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FIG. 6. �Color online� Illustration of phase kinematics of FDO
waves. Dotted line: trajectory of a point moving with the fluid flow.
Solid lines: two successive phase fronts or wave crests.
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medium is stationary and growing, T0 is the period of the
waves as measured at a constant position. Numerical results
discussed below lead us to expect that variations in T0 attrib-
utable to these effects are too small to be detectable by the
current experiment.

We can now analyze the kinematics of the FDO waves
obtained numerically and experimentally. According to a re-
written version vb /C=1− f / f0 of Eq. �8�, a plot of vb /C vs
f / f0 should be linear provided that there are smoothly propa-
gating phase waves controlled by the driving frequency ac-
cording to the FDO mechanism. Figure 7 shows such a linear
behavior for both the experimental and numerical results
�with the exception of the numerical results for frequencies
0.2� f / f0�0.6, which will be discussed in the following
publication�. The experimental phase velocity data are based
on measurements of the space-time plots displayed in Fig. 2
�see Table I�.

As for variations in the intrinsic oscillation frequency f0,
the values of f0 obtained from numerical and experimental
results are plotted in Fig. 8. The numerical values vary by
less than 1%, with the maximum occurring for synchronous
oscillations f / f0=1. The experimental values, on the other
hand, vary by somewhat more than 10% from their average,
and there is less of a clear systematic trend. This suggests
that the variations in the experiments may largely be due to
slight variations in experimental conditions, and therefore
the current experiment is not sensitive to the very small
shifts in the intrinsic frequency that arise from diffusion ef-
fects alone.

Turing waves controlled by the boundary also have prop-
erties determined by geometry and kinematics. They are sta-
tionary with respect to the medium. The boundary can be
thought of as laying down successive stripes as it moves
along. If each oscillation of the boundary deposits one Tur-
ing stripe, then the wavelength of the resulting pattern is

directly proportional to the driving period via the boundary
velocity: 
=vT. The boundary driving can produce Turing
structures if the driving period is such that the resulting
wavelength falls within the range of wavelengths against
which the medium is Turing-unstable. Formally, boundary-
controlled Turing structures can be treated within the same
kinematic framework as above, provided one assumes an in-
trinsic frequency of zero for these patterns. In that case, the
formulas given above �Eqs. �6�–�8�� give c=vb, C=0, and

=vbT.

VII. CONCLUSIONS

We have given an experimental demonstration of the ex-
citation of traveling wave patterns in a growing stationary
medium, with wave frequencies and types selected by means
of forcing at the boundary. The experiments described here
are complementary to the previous demonstration of station-
ary and traveling FDO waves in a flow system �24�. While a
flow system and a growing system are equivalent in prin-
ciple, they are realized differently in the laboratory. The cur-
rent experiments introduced an additional new ingredient,
differential diffusion, which was not present in the previous
flow-system experiments. In the presence of strong differen-
tial diffusion, we verified the prediction that both FDO and
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FIG. 7. �Color online� Kinematic relations of FDO wave prop-
erties for experimental and numerical results. For smoothly propa-
gating phase waves driven by the boundary driving frequency, all
data should fall on the indicated straight line. The numerical results
which fall off of this line at frequencies 0.2� f / f0�0.6 represent
harmonic resonances, as mentioned in the text.
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Turing modes can be selected by boundary forcing at differ-
ent frequencies. Turing modes occurred as expected for
higher forcing frequencies while FDO modes based on the
intrinsic chemical oscillator were found at lower frequencies.
The qualitative behavior of the FDO waves in terms of their
phase velocities, wavelengths, and frequencies, was close to
what was expected. Although the FDO and Turing patterns
occurred within the predicted frequency bands, the Turing
patterns that appeared in the experiments were two-
dimensional and could not be fully accounted for by the
one-dimensional models on which the predictions were
based.

It is worth noting that in the experiments the forcing at the
boundary was far from a simple harmonic, small perturbation
of the unstable fixed point such as envisioned in deriving the
dispersion relation, nor was it, as in previous flow-system
experiments �24�, closely related to the limit cycle of the
chemical oscillator. Also, since the average illumination to
the right of the moving boundary was much higher than in
the active medium, the driving signal always contained a
strong zero-frequency component as well as an oscillatory
one. The selection of particular patterns thus occurred under

more complex conditions than the theoretical models that
predicted them.

In the following paper we will discuss the anomalous re-
sults �see, for example, Fig. 7� that occurred in numerical
simulations at frequencies other than the experimental ones
�in particular, for low but nonzero frequencies and for fre-
quencies in the expected gap between the FDO and Turing
modes�. It will also be worthwhile to examine further the
impact of the two-dimensional medium on the formation of
boundary-driven waves, as hinted at by the experimental
Turing results. Previous experimental and numerical results
�29� for absolutely �rather than convectively� unstable two-
dimensional growing media showed a complicated depen-
dence of Turing pattern orientation on the boundary velocity,
and similar effects beyond the scope of one-dimensional
modeling may be at work here.
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